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SUMMARY 

Turbulence is essentially four-dimensional in character, and requires the corresponding treatment of the well- 
known Navier-Stokes equations. However, this has only been possible over the past twenty years and then by 
using the largest computers available. Interest is now turning from the initial, mainly smooth channel, 
simulations to geometries of eventual engineering significance. This paper reports a new code using the 
spectral methods of Orszag, but also incorporating a novel generalized co-ordinate transformation approach. 

Initial predictions for smooth channels agree well with published data. For distorted geometries, the initial 
velocity field has considerable influence on the success of the simulations. This is accommodated by gradual 
(step) changes towards the required distortion, so that the initial velocity field for the ‘new’ geometry is the 
final field from the previous step. Examples are given of different two-dimensional channel geometries 
achieved, and these include the successful prediction of recirculating flows. 
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INTRODUCTION 

Turbulent fluid flow and heat transfer are of great importance in engineering, but at the same time 
their character is very complex. Here we discuss several features of this complexity, namely the 
basic equations, the multi-dimensional nature and the range of scales. 

With the measurement of quantities such as velocity fluctuations it is understandable that 
turbulence is often viewed as having randomness in a statistical sense. In fact, however, it is being 
increasingly recognized (for example, by Spalding ’) that laminar and turbulent flows are essentially 
identical, with the same ruling Navier-Stokes and energy equations. It is worth recalling that 
Osborne Reynolds’ accepted this identity around a century ago, when trying to reconcile the 
different friction factor behaviours for laminar and turbulent flows. However, the basic equations 
are non-linear, and to treat a fluid flow require simultaneous satisfaction of momentum and 
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continuity principles. As a consequence, even for the more tractable laminar flows (often genuinely 
two-dimensional in nature) treatments of any generality (for example, that of Collins3) needed 
good digital computers. 

In addition, turbulent flows are essentially always four-dimensional in character. Physically, 
they may be viewed as the motion of time-dependent three-dimensional eddies of various sizes. 
These range from that of the confining duct geometry to that where dissipation to heat by fluid 
friction takes place. Reynolds's original averaging procedure2 does not in fact immediately require 
the loss of treatment of this eddy motion, but that is how it is usually applied. Mathematical 
modelling is used for the additional Reynolds stress terms in the momentum equations (for 
example, by Launder and Spalding and geometrical symmetry and mean flow steadiness are used 
to reduce the number of dimensions treated. However, we point out that in a two-dimensional 
turbulent flow defined in such a way, the fluid motion is still four-dimensional.* 

The final factor is that of the range of turbulence scales. For transition and low turbulent flows, 
the dissipation or Kolmogoroff length scale is not too far separated from the large scales, and all 
motions are resolvable (full or direct simulation-DS). For higher turbulence, only the higher 
scales can be resolved (large eddy simulation-LES) and the subgrid scale (SGS) must be 
modelled. Such modelling is of a fairly universal nature. Since the initial work of Smagorinsky,6 a 
number of simulations have been performed in confined ducts, usually for plane geometries. 

Two main methods are apparent, spectral and finite-difference, exemplified by Moin and Kim' 
and Grotzbach and Schumann,' respectively. A finite difference approach has the advantage of 
potentially accommodating abrupt geometry changes. However, for a given number of points 
treated, spectral methods are more accurate, and the method itself mirrors the turbulence 
spectrum. 

The motive for this particular work was to write a simulation code applicable to distorted 
geometriest Immediate applications include heat transfer enhancement using surface roughness 
elements, and recirculating flow downstream of a backward-facing step or a sudden circular 
expansion. However, a code accommodating general, and if possible non-orthogonal, boundaries 
and grid distortions was recognized as being very desirable. The possibility then arose of using the 
basic equations in generalized co-ordinate form. Although this would be computationally 
expensive, it was discovered that a compact form could be used," which avoided the necessity of 
computing the afine connection coefficients (or Christoffel symbols of the second kind). This was 
substantially due to the use of the vorticity rather than the stress form of the equations. A careful 
assessment of computational requirements" showed that for two-dimensional surface distortions 
the method would not be too computationally demanding. Also the approach itself would be 
ultimately applicable to three-dimensional distortions. 

DESCRIPTION OF CODE AND METHOD OF GRID GENERATION 

The spectral approach to fluid dynamic simulation is well d~cumen ted , '~ - '~  and our system of 
codes (FDS) is described elsewhere.I5 Here we concentrate on those aspects that are important for 
presentation of our results. 

The compact form of the covariant Navier-Stokes equations" is used, so that we work in terms 
of the covariant (or the contravariant) components of the velocity vector, rather than the Cartesian 
components. In the compact form the equations are formulated without the use of the afine 

*If such were needed, recent experimental confirmation is provided by holographic interferometry results for a two- 
dimensional heated plane channel. The unsteadiness and spanwise effects are clearly e ~ i d e n t . ~  
To which interest is now pa~s ing .~  
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connection coefficients. The computation method involves only the use of metric coefficients for 
the geometry being treated; though the transformation matrix elements are retained to allow 
graphic output of the flow field in Cartesian co-ordinates, they are not used in the simulation itself. 

The geometries we treat are two-dimensional, the channel having a distorted lower wall and a 
plane upper wall. The Cartesian co-ordinates of the lower wall are input to the code, together with a 
set of required gradients for the co-ordinate lines leaving the wall. These are used to generate the 
co-ordinate lines from the lower wall to the upper wall, using very fine (2000-point) finite 
differences. The gradient is decreased in a controlled manner to zero, so that the co-ordinate lines 
hit the upper wall at right angles. It is also possible to specify that the co-ordinate lines should be 
orthogonal to the lower surface, and we frequently do this. The walls are always surfaces for which z 
is constant in the transformed space. 

This method allows interactive control of the co-ordinate spacing, and, to a lesser extent, control 
of the orthogonality of the co-ordinates. After the Cartesian co-ordinates of all the mesh points 
have been fixed, spectral methods are used to compute the transformation matrix elements and the 
six independent coefficients of the metric tensor at every point. These are computed once in each 
simulation and stored for subsequent calculations within the simulation code. 

At present the transformation quantities (matrices and metric coefficients) are computed using 
the same spectral resolution as is used in the subsequent simulation, though it would not be difficult 
(or too computationally expensive) to use a higher resolution; it has been suggested that this may 
well be desirable. 

The method as described is similar in principle to the multi-surface method of Eiseman.16 It has 
been used to generate three-dimensional transformations, but these are not used in our simulations 
at present since they require much greater storage for the metric coefficients. The method may also 
be extended to cope with distorted upper surfaces. Checks for co-ordinate crossing are 
incorporated. 

The subsequent simulations follow our methods for undistorted geometries' as closely as 
possible. The terms in the underlying equations are split into parts similar to those in the 
undistorted case, together with additional terms arising from the distorted geometry. The latter 
involve the metric coefficients, and are treated explicitly by Adams-Bashforth time stepping, like 
the non-linear term in the equations. The undistorted pressure and viscous terms are advanced by 
Crank-Nicolson time stepping, so that a value of the pressure at the advanced time may be 
obtained. Continuity is enforced for the velocity fields at the advanced time. 

We find that the method is geometry-dependent unconditionally unstable for highly distorted 
geometries. This is almost certainly because in such cases the geometric part of the pressure 
gradient term is large and our treatment of the pressure term is therefore no longer a good 
approximation. Since an error at one time step in the computation of the pressure will affect the 
right hand side at the next step, some form of instability seems likely. An instability may also arise 
from the viscous term in highly distorted geometries. The unconditional form of the instability 
means that it is almost certainly not arising from the advection term in the equations. Time steps 
are chosen within the appropriate Courant limit. 

The four fields are advanced in time in spectral space, that is, using Fourier expansion 
coefficients in the x (streamwise) and y (spanwise) directions. Chebyshev series are used in the z 
direction (between the walls). The wall boundary conditions are imposed using the spectral-tau 
method. The problem reduces to the solution of a sparse, broadly banded set of linear equations for 
every pair of Fourier coefficients. The techniques are well known and have been described by 
Gottlieb and Orszag. l 2  

The non-linear and geometric terms are computed in configuration space, the fields being 
calculated at the collocation points by Fourier transformation (pseudo-spectral method). Aliasing 
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errors arising from this procedure are not eliminated because of the computational expense of full 
de-aliasing. 

The CPU time for a simulation in a distorted geometry is less than twice that in an undistorted 
geometry, because of the economy of our solution method for the transformed equation. However, 
the advantage is not as great as this figure suggests, since the sparse matrix solutions arising from 
the coupled-equation approach do not vectorize well on the CRAY-1 vector computer. 

EXPERIENCE WITH SIMULATION IN DISTORTED CHANNELS 

The main interest in this part of the study using the code described above was the simulation of flow 
in plane channels, eventually with geometries of engineering significance. Up to now published 
papers have discussed simulation mainly in smooth channels, although work for different 
geometries (using the finite difference method' 7-19 and different applications (air flow over 
mountains2') have already been reported. However, no report using a similar method and 
approach to our analysis and code has been found in the open literature. Therefore it is reasonable 
(and possibly helpful for others) to write more information and details about our experience and 
knowledge gained during this work. 

Using the code described, flow simulations were successful in plane channels with small 
distortions, but not in those with large distortions-as shown in Figures 1 and 2. The velocity field 
in the channel shown in Figure 1, after unsuccessful simulation (about 30 steps long), is shown in 
Figure 3. 

The sharpness of the distortion is also important, i.e. even for small but sharp distortions, 
simulations were not successful. Both the size and sharpness of the distortion are probably 
connected with the occurrence of an unconditional geometry-dependent instability in the code. 

Figure 1. Plane channel with square rib, A / H  = 0.5; grid 16 x 16 x 17 

Figure 2. Plane channel with two square ribs, A / H  = 0.25; grid 64 x 16 x 17 

Figure 3. Velocity field of unsuccessful simulation 
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It is worth noting that we regard a successful simulation one which can be performed for at 
least 5 H/u,  (this non-dimensional unit of time is known as a ‘letot’ since it is a rough measure of the 
large eddy turn-over time). 

For a 16 x 16 x 17 grid and a time step t = 0.0025 this required about 1 h computing time on the 
CRAY-1S computer. Flow was simulated for 1800 steps or 4.5 letots-an increase of about 40 per 
cent compared with an undistorted channel (i.e. one not needing transformation of co-ordinates). It 
should be noted that once simulation was successful for that period it could probably be performed 
successfully for greater times: we never experienced simulation failure for times greater than 5 
letots. However, it should be pointed out that only for one particular geometry was a simulation 
carried out for longer than 10 letots: this was because of limitations on computer time. 

To find a practical limit for geometries for which our code could give successful simulations a 
series of channels was investigated with cosine-waves of different amplitude, or ratio A / H  (for 
example Figure 4). This type of distortion can easily take full advantage of the grid generation 
method described above. The general conclusion from this exercise is that the initial velocity field 
has considerable influence on the success of the simulation. This initial velocity field is a direct 
consequence of the generated distribution of co-ordinates. In the case of the initial velocity field 
being too far from the probable velocity field, calculations do not converge to the latter. Using co- 
ordinates orthogonal to the walls throughout the whole channel, simulation can be successful for 
greater cosine-wave amplitude (or A / H ) .  Undoubtedly, co-ordinates orthogonal to the walls result 
in an initial velocity field closer to reality, specifically for the direction of the fluid velocity close to 
the walls. Therefore when dealing with substantial distortion of the channel orthogonal co- 
ordinates had to be used. 

Simulations successful for times around 4 to 5 letots result in velocity fields which we conclude 
are close to those in real flows. This closeness is a question which for plane channels can be verified 
relatively easily. However, for distorted channels it can be only positively judged when computer 
simulations are compared with experimental results-which unfortunately are sparse and 
available only for certain geometries. Therefore the problem remains (when using our code) of how 
close our results for resolved geometries are to those which are useful and/or have experimental 
data. To bring the former as close as possible to the latter, a special method was developed of step 
change in the channel geometry. 

It takes full advantage of the fact that the velocity field after a simulation time of a few letots is 
converging to the required field. The opportunity therefore arises of using the velocity field 
produced at this stage as an initial velocity field for a flow simulation in a channel of somewhat 
greater distortion than the preceding one. Hence, a series of steps of geometry changes will result in 
the final, required geometry being increasingly approached. Our criterion for a successful 
simulation for any step remains the same: it should last about 5 letots. The extent of development of 
the geometry from a given initial geometry is chosen by trial to secure success on the next step. It is 
worth noting that in a few cases success of the simulation on the more complex geometry was 
achieved by returning to the simulation on the previous geometry and running for greater time, 
before submitting the velocity field so produced once again to the new geometry. Similarly, the 
guarantee of a successful flow simulation on the next step increases when the geometry step change 
decreases. These two practical ways of increasing simulation success, however, also increase the 
computing time required. Figures 4-6 show initial, typical interim and final channel geometries, 
during a successful evolution from a cosine-wave towards a perfect-rib. Although simulations for a 
sharp geometry of the type shown in Figure 1 were never achieved, it is important to note that 
successful simulation at each interim stage cannot be achieved otherwise. 

The whole process of step changes of channel geometry introduction is explained in detail in 
Figures 7-9. They show the change of turbulent energy E ,  with time (letots) at two Reynolds 
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Figure 4. Plane channel with cosine-wave, A/H = 0.2; grid 16 x 16 x 17. Initial stage of geometry 

Figure 5. Interim stage of channel geometry 

Figure 6. Final channel geometry in which simulation was successful 
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Figure 7. Unsuccessful introductions of step geometry changes at different points of simulation 
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Figure 8. Successful introductions of step geometry changes at different points of simulation 

numbers (34 and 40). The chosen range of Reynolds number is based on results obtained for a plane 
channel (see Figure 10, taken from Reference 15). That is, for Re, > 33 there is clear evidence of 
transition to self-sustaining turbulence and for Re, > 40 the result of a direct simulation begins to 
be unphysical and an SGS (subgrid scale) model must be used. It should be noted that calculation 
of E ,  for a distorted channel was carried out in the same manner as for the plane channel. In the 
former case the distorted geometry acts as a turbulent promoter and gives an additional 
contribution to E ,  when compared with the plane channel. Therefore, in this case, E ,  always 
sharply increases when a simulation begins (see Figures 7-9). However, its qualitative value as a 
function of time gives the information required-specifically whether or not a statistically stable 
state of simulation was achieved. This may be defined as only a small fluctuation of E ,  being 
present, with its mean value being constant. 

Figure 7 shows the change of turbulent energy E ,  during three unsuccessful attempts (I, 11,111) of 
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Figure 10. Turbulent kinetic energy E, during direct simulation of flow in a plane channel near transition 

step changes in channel geometry. The first attempt (I), i.e. introduction of the geometry shown in 
Figure 5 after about 5 letots of simulation in the geometry shown in Figure 4, results in a velocity 
field similar to that shown in Figure 3. The reason for this failure, in the light of further results, was 
that the step change of channel geometry was introduced too early, when the simulated velocity 
field had not reached a state close enough to the real velocity field. Note that the turbulent energy 
E T  during further simulation in the geometry shown in Figure 4 still decreases. Similar conclusions 
should be drawn from the second unsuccessful attempt (II), i.e. introduction of geometry shown in 
Figure 5, despite the fact that the new geometry was introduced at  the moment when turbulent 
energy E,, for Re, = 40 shows a local minimum. Finally, the third unsuccessful attempt (111) in 
Figure 7, refers to the introduction of the geometry shown in Figure 6, after about 11 letots of 
simulation in the geometry of Figure 4. In this case, the reason for the failure in the light of further 
results, was that the step change of the channel geometry was too great. 

Figure 8 shows successful introduction of two steps of channel geometry changes (IV and V). The 
introduction marked as IV, i.e. introduction of the geometry shown in Figure 5, was made after 
about 11 letots of simulation for the geometry in Figure 4. The next, marked as V, i.e. introduction 
of the geometry of Figure 6, was made after about 5 letots of simulation for the geometry of Figure 
5, preceded, as mentioned, by 11 letots of simulation in a channel of the geometry shown in 
Figure 4. It is worth noting that the introduction of the channel geometry shown in Figure 6 was 
unsuccessful not only in the case marked as I11 in Figure 7. It was also not successful even after 
prolonged simulation to 16 letots in a channel of the geometry shown in Figure 4. This attempt, 
marked as VI, is shown in Figure 9. 
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The final conclusion from the whole exercise is in fact twofold. The step change of channel 
geometry method increases the limit of the size and sharpness of distortion in which simulation 
using our code can be performed successfully. It should be, however, applied gradually with 
sufficient length of simulation in the interim stages. 

The method described might be useful in other codes if a similar problem were encountered. It 
allows simulations to be performed also in channels with ribs, or other distortions, which are not 
sharp (as that from Figures 1 or 2), but smoothed by the effect of deposition. 

The presence of the channel distortion in real flow causes a recirculation region; therefore 
simulation should also produce such a region. Its size and positioning are influenced by three 
factors: the shape, the value of the ratio A / H  and the Reynolds number. 

With our code, at this stage of its development the use of these three factors is restricted for the 
reasons explained earlier. Additionally, the final shape of the channel distortion in which our code 
can be used successfully is such that practically there are no experimental data with which our 
simulation results can be compared. It is also thought that a 16 x 16 x 17 grid is too coarse to 
achieve reasonable resolution and allow detailed comparison with other simulation or experi- 
mental data (if available). For these reasons we present here only qualitative information about 
recirculation regions in our simulations. 

1. For the three geometries shown in Figures 4-6, recirculation regions are not steady, i.e. 
during simulation their lengths (the distances between the points A and B in Figures 11-13) 
and positioning (points A and B) change. The length of this region slightly but noticeably 
increases with increase of the distortion sharpness. It covers 0.2 to 0.4 of the length between 
distortions in channels with the geometries shown in Figures 4 and 5, and 0.25 to 0.45 of this 
length for the geometry shown in Figure 6. 

2. The movement of point A has an oscillatory character. Its position repeats about every 300- 
500 steps of calculation, i.e. 0.75- 1.25 letots. There is a tendency towards more frequent 
oscillations when the sharpness of the distortion increases. 

It should be stressed that although oscillations of point A are present, the flow pattern and 
velocity field do not repeat in all details. This is undoubtedly the result of two facts: the nature of 
turbulent flows and also because of the continuous convergence of the simulating flow to the real 
one (note that turbulent energy E ,  in Figures 7-9 still decreases). The removal of the influence of 
the latter could only be done by prolonged simulation, probably for at least 10 letots. However, 
since it would involve more expensive computing time, it was decided at this stage of the work to 
stop the simulation at that point and concentrate upon implementation of conclusions reached 
from work already performed in the future flow simulation (using the code discussed) in the channel 
geometry of practical interest. 

, 

CONCLUSIONS AND FUTURE WORK 

The analysis and code reported in this paper have been successfully applied to give large eddy and 
direct simulations of turbulent flow in smooth plane channels, either smooth or with two- 
dimensional surface distortions. Grid and boundary generation are achieved by using a 
generalized form of the basic Navier-Stokes equations. 

Results for smooth channels compare well with published data, and those for distorted 
geometries include satisfactory predictions of recirculating flows. The unconditional instability 
encountered, however, limits the sharpness of distortion treatable, and the code will, therefore, be 
used in parallel with a new three-dimensional time-marching finite difference code which 
satisfactorily accommodates abrupt boundary changes. 

A comparison is planned with experimental data obtained using holographic interferometry. 
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Figure 11. Velocity field in channel with geometry from Figure 4, with recirculation region (between points A and B) 
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Figure 12. Velocity field in channel with geometry from Figure 5 with recirculation region (between points A and B) 
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Figure 13. Velocity field in channel with geometry from Figure 6 with recirculation region (between points A and B) 
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The geometry is that of originally square individual roughness elements, but smoothed by the effeci 
of deposition. 
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